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Abstract
Let R be a commutative ring with nonzero identity. In this paper, we introduce and 
investigate a generalization of 1-absorbing prime ideals. Let m, n be nonzero posi-
tive integers such that m > n . A proper ideal I of R is said to be an (m, n)-absorb-
ing prime ideal if whenever nonunit elements a1, ..., am ∈ R and a1...am ∈ I , then 
a1...an ∈ I or a

n+1...am ∈ I. We give some basic properties of this class of ideals 
and we study (m, n)-absorbing prime ideals of localization of rings, direct product 
of rings and trivial ring extensions. A proper ideal I of R is called an AB-(m, n)-
absorbing ideal of R if whenever a1 ⋯ a

m
∈ I for some elements a1, ..., am ∈ R , 

then there are n of the a
i
 ’s whose product is in I. A proper ideal I of R is called 

an (m, n)-absorbing ideal of R if whenever a1 ⋯ a
m
∈ I for some nonunit elements 

a1, ..., am ∈ R , then there are n of the a
i
 ’s whose product is in I. We study some con-

nections between (m,  n)-absorbing prime ideals, (m,  n)-absorbing ideals and AB-
(m, n)-absorbing ideals of commutative rings.
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1  Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero iden-
tity and all modules are nonzero unital. If R is a ring, then 

√
I denotes the radical 

of an ideal I of R and J(R) denotes the Jacobson radical of R. A commutative ring R 
with exactly one maximal ideal is called a quasi-local ring.

The prime ideal, which is an important subject of ideal theory, has been widely 
studied by various authors. Among the many recent generalizations of the notion 
of prime ideals in the literature, we find the following, due to Badawi [5]. A proper 
ideal I of R is said to be a 2-absorbing ideal if whenever a, b, c ∈ R and abc ∈ I , 
then ab ∈ I or ac ∈ I or bc ∈ I . In this case 

√
I = P is a prime ideal with P2 ⊆ I 

or 
√
I = P1 ∩ P2 where P1,P2 are incomparable prime ideals with P1P2 ⊆ I , cf. [5, 

Theorem 2.4]. A generalization of 2-absorbing ideals was studied in [1, 3, 4]. We 
recall from [3] that a proper ideal I of a commutative ring R is called an n-absorbing 
ideal of R for some positive integer n ≥ 1 if whenever a1 ⋯ an+1 ∈ I for some ele-
ments a1, ..., an+1 ∈ R , then there are n of the ai ’s whose product is in I. Let m, n be 
positive integers such that m > n and I be a proper ideal of a commutative ring R. 
Then I is called an (m, n)-closed ideal of R as in [4] if whenever xm ∈ I for some 
x ∈ R , then xn ∈ I . Furthermore, I is called an (m, n)-absorbing ideal of R as in [1] 
if whenever a1 ⋯ am ∈ I for some nonunits a1, ..., am ∈ R , then there are n of the 
ai ’s whose product is in I. Recently, Badawi and Yetkin [6] consider a new class of 
ideals called the class of 1-absorbing primary ideals. A proper ideal I of a ring R is 
called a 1-absorbing primary ideal of R if whenever nonunit elements a, b, c ∈ R 
and abc ∈ I , then ab ∈ I or c ∈

√
I . In [12], A. Yassine et. al introduced the concept 

of 1-absorbing prime ideals which is a generalization of prime ideals. A proper ideal 
I of R is a 1-absorbing prime ideal if whenever nonunit elements a, b, c ∈ R with 
abc ∈ I , then ab ∈ I or c ∈ I . In this case 

√
I = P is a prime ideal, cf. [12, Theo-

rem 2.3], and if R is a commutative ring that admits a 1-absorbing prime ideal that is 
not prime, then R is a quasi-local ring.

In this paper, we study a generalization of 1-absorbing prime ideals. Let m, n be 
nonzero positive integers such that m > n . A proper ideal I of a commutative ring 
R is said to be an (m, n)-absorbing prime ideal of R if whenever nonunit elements 
a1, ..., am ∈ R and a1 ⋯ am ∈ I , then a1 ⋯ an ∈ I or an+1 ⋯ am ∈ I. Clearly, if I is an 
(m, n)-absorbing prime ideal, then I is an (m + 1, n + 1)-absorbing prime ideal. In 
particular, every prime ideal is an (m, n)-absorbing prime ideal. However, the con-
verse is not true. Furthermore, we call I an AB-(m, n)-absorbing ideal of R if when-
ever a1 ⋯ am ∈ I for some elements a1, ..., am ∈ R , then there are n of the ai ’s whose 
product is in I. It is clear that every AB-(m,  n)-absorbing ideal of a commutative 
ring is an (m, n)-absorbing ideal as in [1]. We give an example (see Example 2.3) 
of a commutative ring R that admits an (m, n)-absorbing ideal that is not an AB-
(m, n)-absorbing ideal. Let I be a proper ideal of a ring R such that I ⊈ J(R) . We 
show (Corollary 2.5) that I is an (m, n)-absorbing ideal of R if and only if I is an AB-
(m, n)-absorbing ideal of R.
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Among many results, we give an example of an (m, n)-absorbing prime ideal that 
is not an (m − 1, n − 1)-absorbing prime ideal for some nonzero positive integers 
m > n (Example  2.9). We show (Theorem  2.10 (1)) that if a ring R is not quasi-
local, then a proper ideal I of R is an (m, n)-absorbing prime ideal if and only if I is 
a prime ideal of R. If I is a proper ideal of R such that I is an (m, n)-absorbing prime 
ideal of R for some positive integers m > n , then we show (Theorem 2.13) that 

√
I 

is a prime ideal of R. If R is a quasi-local ring with maximal ideal M and n ≥ 2 is 
a positive integer, then we provide a method (Theorem 2.14 and Theorem 2.17) on 
how to construct a (2n, n)-absorbing prime ideal of R that is not a prime ideal of R 
such that 

√
I ≠ M . Let R be a chained ring with maximal ideal M and n ≥ 2 . We 

show (Theorem 2.19) that if a proper ideal I of R is an (n + 1, n)-absorbing prime 
ideal of R that is not a prime ideal of R, then I = Mk for some positive integer k, 
2 ≤ k ≤ n . Finally, we study (m, n)-absorbing prime ideals of localization of rings, 
direct product of rings and trivial ring extensions.

2 � Some properties and connections

We start this section by the following definitions.

Definition 2.1  Let m,  n be nonzero positive integers such that m > n and I be a 
proper ideal of a commutative ring R. Then 

(1)	 I is called an (m, n)-absorbing prime ideal of R if whenever nonunit elements 
a1, ..., am ∈ R and a1...am ∈ I , then a1 ⋯ an ∈ I or an+1 ⋯ am ∈ I.

(2)	 I is called an (m, n)-absorbing ideal of R as in [1] if whenever a1 ⋯ am ∈ I for 
some nonunits a1, ..., am ∈ R , then there are n of the ai ’s whose product is in I.

(3)	 I is called an AB-(m, n)-absorbing ideal of R if whenever a1 ⋯ am ∈ I for some 
elements a1, ..., am ∈ R , then there are n of the ai ’s whose product is in I.

The proof of the following results follows from the definitions. Hence we omit 
the proof.

Theorem 2.2  Let m, n be nonzero positive integers such that m > n and I be a proper 
ideal of a commutative ring R. Then 

(1)	 If I is an AB-(m, n)-absorbing ideal of R, then I is an (m, n)-absorbing ideal of 
R.

(2)	 Suppose that I is an (m, n)-absorbing prime ideal of R. Let k = max{n,m − n} . 
Then I is an (m, k)-absorbing ideal of R.

(3)	 If I is an AB-(m, n)-absorbing ideal of R, then I is an (m, n)-closed ideal of R.

In the following example, we show that the converse of (1), (2) and (3) in Theo-
rem 2.2 are not true.
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Example 2.3  Let A = ℤ2[[X, Y , Z]] , H = (X2
+ Y2, Y2

+ Z2
)A and R = A∕H . Con-

sider the ideal I = (H + (XYZ,X(Y + Z),Y(X + Z),X2
)A)∕H . 

(1)	 We show that I is a (4, 2)-absorbing ideal of R that is not an AB-(4, 2)-absorbing 
ideal of R. Let x, y, z denote the elements X + H, Y + H, Z + H of R, respectively. 
We show that I is not an AB-(4, 2)-absorbing ideal of R. Since 1 ⋅ x ⋅ y ⋅ z ∈ I 
but neither xy ∈ I nor yz ∈ R nor xz ∈ I , we conclude that I is not an AB-
(4, 2)-absorbing ideal of R. In order to show that I is a (4, 2)-absorbing ideal of 
R, we make the following observations. Let S = {x, y, z} and D = {v ∈ R ∣ v is a 
nonunit element of R} . Then 

(a)	 x2f = y2f = z2f ∈ I for every f ∈ R.
(b)	 Let a1, a2 be distinct elements of S. Then a1a2 ∉ I . Since x2 = y2 = z2 ∈ I 

and xyz ∈ I , we have a1a2v ∈ I for every v ∈ D.
(c)	 S i n c e  x(y + z), y(x + z) ∈ I   ,  w e  h a v e 

z(x + y) = x(y + z) + y(x + z) = xy + xz + yx + yz = xz + yz ∈ I.
(d)	 Since x(y + z), y(x + z), z(x + y) ∈ I  and x2 = y2 = z2 ∈ I  , we have 

(x + y + z)v ∈ I for every v ∈ D.
(e)	 Let a1, a2 ∈ S ( a1, a2 need not be distinct). Then (a1 + a2)

2
= 0 + H = H ∈ I

.
(f)	 Let v ∈ D ⧵ I . Then v = a + b for some a, b ∈ D such that ad ∈ I for every 

d ∈ D and bc ∉ I for some c ∈ D . In view of (a)–(d), we conclude that b 
must be one of the following types. 

	 (i)	 Type I. b = x , or b = y , or b = z.
	 (ii)	 Type II. b = x + y , or b = x + z , or b = y + z.

(g)	 Assume that a1a2a3a4 ∈ I for some a1, a2, a3, a4 ∈ D . In view of (f), we 
consider the following three cases. 

	 (i)	 Case I. We may assume that a1, a2, a3, a4 are all of type I (as in 
(i)). Hence we may assume that a1 = x, a2 = y, a3 = z . Then a4 must 
equal to a1 or a2 or a3 . Since x2 = y2 = z2 ∈ I , we may assume that 
a4 = a1 . Thus a1a4 = x2 ∈ I.

	 (ii)	 Case II. We may assume that a1, a2, a3, a4 are all of type II (as in (ii)). 
Hence we may assume that a1 = x + y, a2 = y + z, a3 = x + z . Then 
a4 must equal to a1 or a2 or a3 . Since a2

1
= a2

2
= a2

3
= 0 + H ∈ I by 

(e), we may assume that a4 = a1 . Thus a1a4 = 0 + H ∈ I.
	 (iii)	 Case III. We may assume that some of the ai ’s are of type I and some 

of the ai ’s are of type II. In light of (a) and (e), we may assume that 
a1, a2, a3, a4 are distinct. Then by investigating all possibilities, we 
conclude that there are two of the ai ’s whose product is in I by (c).

(2)	 Let a1 = x, a2 = y, a3 = x , and a4 = z . Then a1a2a3a4 ∈ I , but neither a1a2 ∈ I 
nor a3a4 ∈ I . Hence I is not a (4, 2)-absorbing prime ideal of R.
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(3)	 Since I is a (4, 2)-absorbing ideal of R, it is clear that I is a (4, 2)-closed ideal, 
but I is not an AB-(4, 2)-absorbing ideal of R.

Let R and I be as in Example 2.3. It is clear that R is a quasi-local ring and 
hence I ⊂ J(R) . We have the following result.

Theorem 2.4  Let m, n ≥ 1 be positive integers such that m > n , R be a commutative 
ring and I be a proper ideal of R such that 1 + i ∉ U(R) for some i ∈ I . Then I is an 
AB-(m, n)-absorbing ideal of R if and only if I is an (m, n)-absorbing ideal of R.

Proof  If I is an AB-(m, n)-absorbing ideal of R, then it is clear that I is an (m, n)-
absorbing ideal. Hence assume that I is an (m,  n)-absorbing ideal of R. Suppose 
that a1a2 ⋯ am ∈ I for some elements a1, a2, ..., am ∈ R . We may assume that for 
some k ≥ n + 2 , we have ak, ak+1, ..., am are units of R and a1, a2, ..., ak−1 are non-
unit elements of R. Thus a1a2 ⋯ ak−1 ∈ I . Since 1 + i ∉ U(R) for some i ∈ I , let 
bk = bk+1 = ⋯ = bm = i + 1 . Then a1 ⋯ ak−1bk ⋯ bm = a1 ⋯ ak−1(i + 1)(m−k+1) ∈ I . 
Since I is an (m,  n)-absorbing ideal of R, there are n elements of the ai’s, 
1 ≤ i ≤ k − 1 , and bj’s, k ≤ j ≤ m − k + 1 , whose product is in I. Since i ∈ I 
and 1 ∉ I , (i + 1)e ∉ I for every positive integer e ≥ 1 . Hence there is an inte-
ger h, 1 ≤ h ≤ n , and h elements of the ai’s, 1 ≤ i ≤ k − 1 , say a1, ..., ah , such that 
a1 ⋯ ah(i + 1)(n−h) ∈ I . Since (i + 1)n−h = fi + 1 for some f ∈ R (note that if h = n , 
then f = 0 ) and a1 ⋯ ah(fi + 1) ∈ I , we conclude that a1 ⋯ ah ∈ I . Thus I is an AB-
(m, n)-absorbing ideal of R. 	�  ◻

In view of the proof of Theorem 2.4, we have the following corollary.

Corollary 2.5  Let m, n ≥ 1 be positive integers such that m > n , R be a commutative 
ring and I be a proper ideal of R such that I ⊈ J(R) . Then I is an AB-(m, n)-absorb-
ing ideal of R if and only if I is an (m, n)-absorbing ideal of R.

Proof  Since I ⊈ J(R) , 1 + i ∉ U(R) for some i ∈ I . Hence the claim is clear by Theo-
rem 2.4. 	� ◻

Let m, n ≥ 1 be positive integers such that m > n . Assume that I1 is an (m, n)-
absorbing ideal of R1 and I2 is an (m, n)-absorbing ideal of R2 . Then I1 × I2 needs 
not be an (m, n)-absorbing ideal of R1 × R2 . We have the following example.

Example 2.6  Let R = ℤ × ℤ , I1 = 4ℤ and I2 = 9ℤ . Then I1 and I2 are (4, 2)-absorb-
ing ideals of ℤ . We show that I = I1 × I2 is not a (4, 2)-absorbing ideal of R. Let 
x1 = (2, 1), x2 = (2, 1), x3 = (1, 3), x4 = (1, 3) . Then x1, ..., x4 are nonunit elements of 
R and x1 ⋯ x4 ∈ I , but the product of every two of the x′

i
s is not in I. Thus I is not a 

(4, 2)-absorbing ideal of R.

In view of Example 2.6, we have the following result.
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Theorem 2.7  Let m, n ≥ 1 be positive integers such that m > n , R = R1 × R2 , where 
R1,R2 are commutative rings with 1 ≠ 0 , I1 be a proper ideal of R1 , and I = I1 × R2 . 
The following statements are equivalent. 

(1)	 I is an (m, n)-absorbing ideal of R.
(2)	 I1 is an AB-(m, n)-absorbing ideal of R1.
(3)	 I is an AB-(m, n)-absorbing ideal of R.

Proof  (1) ⇒ (2) . Assume that I1 is not an AB-(m,  n)-absorbing ideal of R1 . Then 
there are x1,⋯ , xm ∈ R1 such that x1 ⋯ xm ∈ I1 , but there are no n of the x′

i
s whose 

product is in I1 . Let d1 = (x1, 0), d2 = (x2, 0), ..., dm = (xm, 0) . Then d1, ..., dm are non-
unit elements of R and d1 ⋯ dm ∈ I . Since I is an (m, n)-absorbing ideal of R, we 
conclude that there are n of the d′

i
s whose product is in I. Hence there are n of the x′

i
s 

whose product is in I1 , a contradiction. Thus I1 is an AB-(m, n)-absorbing ideal of R1.
(2) ⇒ (3) . It is clear.
(3) ⇒ (4) . Since every AB-(m, n)-absorbing ideal is an (m, n)-absorbing ideal, the 

claim is clear. 	�  ◻

The following remark follows from the definition of (m,  n)-absorbing prime 
ideals.

Remark 2.8  Let R be a ring, I a proper ideal of R and let m, n be nonzero positive 
integers such that m > n . 

(1)	� I is a (2, 1)-absorbing prime ideal of R if and only if I is a prime ideal.
(2)	� I is a (3, 2)-absorbing prime ideal of R if and only if I is a 1-absorbing prime 

ideal.
(3)	� If I is an (m,  n)-absorbing prime ideal, then I is an (m + 1, n + 1)-absorbing 

prime ideal.
(4)	� I is an (m, n)-absorbing prime ideal if and only if I is an (m,m − n)-absorbing 

prime ideal.

The following example shows that the converse of Remark 2.8 (3) needs not be 
true.

Example 2.9  Let R = ℤ
(p) , where (p) is a prime ideal of ℤ for a prime integer p of ℤ , 

n ≥ 2 be a nonzero positive integer, and I = pnR . Assume that a1, ..., an+1 are nonunit 
elements of R such that a1 ⋯ an+1 ∈ I . Clearly, ai ∈ pR for each i ∈ {1, ..., n + 1} . 
Hence a1 ⋯ an ∈ I and so I is an (n + 1, n)-absorbing prime ideal of R. Since pn ∈ I 
and pn−1 ∉ I , we conclude that I is not an (n, n − 1)-absorbing prime ideal of R.

Let m, n be nonzero positive integers such that m > n . In the next result, we show 
that if a ring R admits an (m, n)-absorbing prime ideal that is not an (m − 1, n − 1)
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-absorbing prime ideal of R, then R is a quasi-local ring. Furthermore, if R is not a 
quasi-local ring, then a proper ideal I of R is an (m, n)-absorbing prime ideal of R if 
and only if I is a prime ideal of R.

Theorem 2.10  Let m, n be nonzero positive integers such that m > n , R be a ring 
and I a proper ideal of R. Then the following statements hold. 

(1)	 Assume that R is not a quasi-local ring. Then the following conditions are equiv-
alent. 

(a)	 I is an (m, n)-absorbing prime ideal of R.
(b)	 I is an (m − 1, n − 1)-absorbing prime ideal of R
(c)	 I is an (m − n + 1, 1)-absorbing prime ideal of R.
(d)	 I is a prime ideal of R.

(2)	 I is an (n + 1, n)-absorbing prime ideal if and only if I is prime or R is quasi-local 
with maximal ideal M such that Mn ⊆ I.

Proof  (1) (a) ⇔ (b) . By Remark 2.8 (3), it suffices to prove that (a) ⇒ (b) . Assume 
that I is an (m,  n)-absorbing prime ideal that is not an (m − 1, n − 1)-absorbing 
prime ideal of R. Hence there exist nonunit elements a1, ..., am−1 ∈ R such that 
a1 ⋯ am−1 ∈ I , a1 ⋯ an−1 ∉ I and an ⋯ am−1 ∉ I . Let d be a nonunit element of R. As 
da1 ⋯ am−1 ∈ I , I is an (m, n)-absorbing prime ideal of R and an ⋯ am−1 ∉ I, we con-
clude that da1 ⋯ an−1 ∈ I. Let c be a unit element of R. Suppose that d + c is a nonu-
nit element of R. Since (d + c)a1..., am−1 ∈ I , I is an (m, n)-absorbing prime ideal of 
R and an ⋯ am−1 ∉ I, , we get that (d + c)a1 ⋯ an−1 = da1 ⋯ an−1 + ca1 ⋯ an−1 ∈ I. 
Since da1 ⋯ an−1 ∈ I, we conclude that a1 ⋯ an−1 ∈ I, which gives a contradiction. 
Hence, d + c is a unit element of R. Now, the result follows from [6, Lemma 1].

(b) ⇔ (c) . This follows by induction.
(c) ⇔ (d) . Assume that I is (m − n + 1, 1)-absorbing prime. Thus, by Remark 2.8 

(4), I is an (m − n + 1,m − n)-absorbing prime ideal and so “ (a) ⇒ (c) " implies that 
I is prime. The converse is clear.

(2) It suffices to prove the “ only if" assertion. If R is not quasi-local, then I is 
prime by (1). Now, assume that R is quasi-local with maximal ideal M such that 
Mn ⊈ I . We show that I is an (n, n − 1)-absorbing prime ideal of R. Deny. Then there 
exist a nonunit elements a1, , ..., an of R such that a1 ⋯ an ∈ I , but niether a1 ⋯ an−1 
nor an ∈ I . Let x1, ..., xn ∈ M . Since x1 ⋯ xna1 ⋯ an ∈ I , I is an (n + 1, n)-absorbing 
prime ideal of R and an ∉ I , we conclude that x1 ⋯ xna1 ⋯ an−1 ∈ I . Also, as I is an 
(n + 1, n)-absorbing prime ideal and a1 ⋯ an−1 ∉ I , we get that x1 ⋯ xn ∈ I . Thus 
Mn ⊆ I , which is a contradiction. Therefore I is an (n, n − 1)-absorbing prime ideal 
of R. Since Mp ⊈ I for each p ≤ n , we get, by induction, that I is a prime ideal of R. 	
� ◻

In view of Theorem 2.10 (1), we have the following result.
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Corollary 2.11  Let m, n be nonzero positive integers such that m > n . Suppose that I1 
and I2 are ideals of the rings R1 and R2 , respectively. Then the following statements 
are equivalent: 

(1)	 I1 × I2 is an (m, n)-absorbing prime ideal of R1 × R2.
(2)	 I1 × I2 is a prime ideal of R1 × R2.
(3)	 I1 is a prime ideal of R1 and I2 = R2 or I1 = R1 and I2 is a prime ideal of R2.

Proof  Since R1 × R2 is not quasi-local, the claim is clear by Theorem 2.10 (1). 	�  ◻

In view of Theorem 2.10 (2), we have the following result.

Corollary 2.12  Let m, n be nonzero positive integers such that m > n . Assume that 
I is an (n + 1, n)-absorbing prime ideal of a ring R that is not prime, and I ⊆ J for 
some proper ideal J of R. Then J is an (m, n)-absorbing prime ideal of R.

Proof  Since I is an (n + 1, n)-absorbing prime ideal of R that is not prime, we con-
clude that R is a quasi-local ring with maximal ideal M such that Mn ⊆ I . Since 
Mn ⊆ I ⊆ J , the claim is clear. 	�  ◻

Theorem  2.13  Let m,  n be nonzero positive integers such that m > n . If I is an 
(m, n)-absorbing prime ideal of a ring R, then 

√
I is a prime ideal of R. In particu-

lar, assume that I is not a prime ideal of R. Then R is a quasi-local ring with maxi-
mal ideal M and if m = n + 1 , then 

√
I = M.

Proof  Assume that I is an (m,  n)-absorbing prime ideal of R. Let x, y ∈ R such 
that xy ∈

√
I . Without loss of generality, we may assume that x and y are nonu-

nit elements of R. Thus, there exists a positive integer p such that xpyp ∈ I and so 
xn−1xpym−n−1yp ∈ I . Then, we can pick ai = x for i = 1, ..., n − 1 , an = xp , ai = y for 
i = n + 1, ...,m − 1 and am = yp . Since I is an (m, n)-absorbing prime ideal of R, we 
conclude that xn+p−1 = a1 ⋯ an ∈ I or ym−n+p−1 = an+1 ⋯ am ∈ I . Therefore, x ∈

√
I 

or y ∈
√
I . Hence 

√
I is a prime ideal of R. Assume that I is not a prime ideal of R. 

Then R is a quasi-local ring by Theorem 2.10 (1). Let M be the maximal ideal of R. 
If m = n + 1 , then Mn

∈ I by Theorem 2.10 (2). Thus 
√
I = M . 	�  ◻

In view of Theorem 2.13, in the following result, we provide a method on how to 
construct (4, 2)-absorbing prime ideal of a quasi-local ring R with maximal ideal M 
such that I is not a prime ideal of R and 

√
I ≠ M.

Theorem 2.14  Let R be a quasi-local ring with maximal ideal M. Assume that M 
contains a prime element x of R such that M ≠ xR . Then I = xM is a (4, 2)-absorb-
ing prime ideal of R that is neither a (3, 2)-absorbing prime ideal of R nor a prime 
ideal of R such that 

√
I = xR ≠ M . Furthermore, I is an AB-(4, 2)-absorbing ideal 

of R that is an AB-(3, 2)-absorbing ideal of R.
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Proof  It is clear that 
√
I ≠ M and 

√
I = xR is a prime ideal of R. Since R is 

a quasi-local ring, x ∉ xM , and hence xM is not a prime ideal of R. Assume 
that a1, ..., a4 ∈ M such that a1 ⋯ a4 ∈ I . Then at least one of the a′

i
s is in xR. If 

a1 ∈ xR or a2 ∈ xR , then a1a2 ∈ I . If a3 ∈ xR or a4 ∈ xR , then a3a4 ∈ I . Thus 
I is a (4,  2)-absorbing prime ideal of R. We show that I is not a (3,  2)-absorbing 
prime ideal of R. Since M ≠ xR , there is an m ∈ M ⧵ xR . Thus m2

∉ xR , and hence 
m2

∉ xM = I . Let a1 = a2 = m and a3 = x . Then a1a2a3 ∈ I , but neither a1a2 ∈ I 
nor a3 ∈ I . Hence I is not a (3, 2)-absorbing prime ideal of R.

We show that I is a (4, 2)-absorbing ideal of R. Assume that a1, ..., a4 ∈ R such 
that a1 ⋯ a4 ∈ I . Then at least one of the a′

i
s is in xR. We may assume that a1 ∈ xR . 

If a2 , a3 and a4 are unit elements of R, then a1 ∈ I and we are done. Assume ai ∈ M 
for some i, where 2 ≤ i ≤ 4 . Then a1ai ∈ I . Thus I is an AB-(4, 2)-absorbing ideal of 
R. By using a similar argument, one can show that I is an AB-(3, 2)-absorbing ideal 
of R. 	�  ◻

Remark 2.15  In view of [6, Theorem 6], Theorem 2.14, and Remark 2.8 (2), we con-
clude that I = xM , as in Theorem 2.14, is a 1-absorbing primary ideal of R that is 
neither a primary ideal of R nor a 1-absorbing prime ideal of R.

In view of Theorem 2.14, we have the following example.

Example 2.16  Let A = ℤ[X] , and L = (2,X)A . Then L is a maximal ideal of A. 
Let R = AL . Then R is a quasi-local ring with maximal ideal M = (2,X)R . Let 
I = 2M = (4, 2X)R . By Theorem 2.14, we conclude that I is a (4, 2)-absorbing prime 
ideal of R that is not a (3, 2)-absorbing prime ideal of R such that 

√
I = 2R ≠ M . 

Furthermore, I is an AB-(4, 2)-absorbing ideal of R that is an AB-(3, 2)-absorbing 
ideal of R.

In view of Theorem 2.14, we have the following result.

Theorem 2.17  Let n ≥ 3 be a positive integer and R be a quasi-local ring with maxi-
mal ideal M. Assume that M contains a prime element x of R such that M ≠ xR . 
Then I = xMn−1 is a (2n, n)-absorbing prime ideal of R that is not a prime ideal of R 
such that 

√
I = xR ≠ M . Furthermore, if xMn−1 ≠ xMn−2 , then I is not a (2n − 1, n)

-absorbing prime ideal of R.

Proof  It is clear that 
√
I ≠ M and 

√
I = xR is a prime ideal of R. Since R is a 

quasi-local ring, x ∉ xM , and hence xM is not a prime ideal of R. Assume that 
a1, ..., an, ..., a2n ∈ M such that a1 ⋯ an ⋯ a2n ∈ I . Then at least one of the a′

i
s 

is in xR. If ai ∈ xR for some i, 1 ≤ i ≤ n , then a1 ⋯ an ∈ I . If ai ∈ xR for some i, 
n + 1 ≤ i ≤ 2n , then an+1 ⋯ a2n ∈ I . Thus I is a (2n,  n)-absorbing prime ideal 
of R. Assume that xMn−1 ≠ xMn−2 . We show that I is not a (2n − 1, n)-absorbing 
prime ideal of R. Since M ≠ xR , there is an m ∈ M ⧵ xR . Thus mn

∉ xR , and hence 
mn

∉ xMn−1
= I . Since xMn−2 ≠ xMn−1 , there are an+2, ..., a2n−1 ∈ M such that 

xan+2 ⋯ a2n−1 ∉ xMn−1 . Let a1 = a2 = ⋯ = an = m . Then a1 ⋯ anxan+2 ⋯ a2n−1 ∈ I , 
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but neither a1 ⋯ an = mn
∈ I nor xan+2 ⋯ a2n−1 ∈ xMn−1 . Hence I is not a (2n − 1, n)

-absorbing prime ideal of R. 	�  ◻

Theorem 2.18  Let I be an (m, n)-absorbing prime ideal of a ring R and let d ∈ R ⧵ I 
be a nonunit element of R. Then (I ∶ d) = {x ∈ R ∣ dx ∈ I} is an (m − 1, n − 1)

-absorbing prime ideal of R. In particular, for every proper ideal J of Rwith 
J ⊈ I, (I ∶ J) is an (m − 1, n − 1)-absorbing prime ideal of R.

Proof  Suppose that a1 ⋯ am−1 ∈ (I ∶ d) for some nonunit elements a1, ..., am−1 of R. 
Assume that a1 ⋯ an−1 ∉ (I ∶ d) . Since da1 ⋯ am−1 ∈ I and I is an (m, n)-absorbing 
prime ideal of R, we conclude that an ⋯ am−1 ∈ I ⊆ (I ∶ d) and this completes the 
proof. 	�  ◻

Recall that a ring R is a chained ring if the set of all ideals of R are linearly ordered 
by inclusion. Moreover, R is said to be an arithmetical ring if RM is a chained ring 
for each maximal ideal M of R. We next determinate the (n + 1, n)-absorbing prime 
ideals of a chained ring.

Theorem 2.19  Let R be a chained ring with maximal ideal M and I be an (n + 1, n)

-absorbing prime ideal of R for some positive integer n ≥ 2 . If I is not a prime ideal 
of R, then I = Mk for some positive integer k, 2 ≤ k ≤ n . Furthermore, if k < n , then 
I is an (k + 1, k)-absorbing prime ideal of R.

Proof  Let I be an (n + 1, n)-absorbing prime ideal of R that is not a prime ideal of 
R. Since R is a quasi-local ring with maximal ideal M, we conclude that Mn ⊆ I 
by Theorem 2.10 (2). Let k = min{i|Mi ⊆ I} . We show that I = Mk . Suppose that 
Mk ⊊ I . Thus there is a ∈ Mk−1 ⧵ I and b ∈ I ⧵Mk. Since R is a chained ring, we 
conclude that b ∈ aR . Hence b = ar for some r ∈ M . Thus b ∈ Mk , a contradiction. 
Hence I = Mk . It is clear that Mk is a (k + 1, k)-absorbing prime ideal of R. 	�  ◻

In view of Theorem 2.19, we have the following result.

Corollary 2.20  Let R be an arithmetical ring with Jacobson radical M and I be a 
(n + 1, n)-absorbing prime ideal of R for some positive integer n ≥ 2 . If I is not a 
prime ideal of R, then I = Mk for some positive integer k, 2 ≤ k ≤ n . Furthermore, if 
k < n , then I is a (k + 1, k)-absorbing prime ideal of R.

Proof  If R is not a quasi-local ring, then I is a prime ideal of R by Theorem 2.10 (1). 
Thus assume that R is a quasi-local ring. Then M is the maximal ideal of R. Since 
R is an arithmetical quasi-local ring, we conclude that R is a chained ring. Thus 
I = Mk for some positive integer k, 2 ≤ k ≤ n by Theorem 2.19. 	�  ◻

Theorem 2.21  Let R be a ring, and I a proper ideal of R. Then I is an (m, n)-absorb-
ing prime ideal if and only if whenever I1 ⋯ Im ⊆ I for some proper ideals I1, ..., Im 
of R, then I1 ⋯ In ⊆ I or In+1 ⋯ Im ⊆ I.
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Proof  It suffices to prove the “if” assertion. Suppose that I is an (m,  n)-absorb-
ing prime ideal and let I1, ..., Im be proper ideals of R such that I1 ⋯ Im ⊆ I 
and In+1 ⋯ Im ⊈ I . Hence an+1 ⋯ am ∉ I for some an+1 ∈ In+1, ..., am ∈ Im . Let 
b1 ∈ I1, ..., bn ∈ In . Then b1 ⋯ bnan+1 ⋯ am ∈ I . Since I is an (m, n)-absorbing ideal 
of R and an+1 ⋯ am ∉ I , we conclude that b1 ⋯ bn ∈ I . Thus I1 ⋯ In ⊆ I . 	�  ◻

Theorem 2.22  Let R be a ring with Jacobson radical M and let n be a nonzero posi-
tive integer. The following statements are equivalent. 

(1)	 Every proper ideal of R is an (n + 1, n)-absorbing prime ideal.
(2)	 Every proper principal ideal of R is an (n + 1, n)-absorbing prime ideal.
(3)	 R is quasi-local and Mn

= 0.

Proof  (1) ⇒ (2). This is obvious.
(2) ⇒ (3). Assume that R is not a quasi-local ring. Then every proper principal 

ideal of R is a prime ideal by Theorem 2.10 (1). Consequently, R is a field, a contra-
diction. This implies that R is a quasi-local ring with maximal ideal M. Hence {0} is 
a prime ideal or Mn

= {0} by Theorem 2.10 (2). Assume that Mn ≠ {0} . Then R is 
an integral domain and there is some nonzero x ∈ Mn . It follows from Theorem 2.10 
(2) that x2R is a prime ideal or Mn ⊆ x2R . If x2R is a prime ideal, then x2R = xR . If 
Mn ⊆ x2R , then Mn ⊆ x2R ⊆ xR ⊆ Mn , and thus x2R = xR . Hence in both cases, we 
have x2R = xR , and thus x is a unit, a contradiction.

(3) ⇒ (1). Let I be an ideal of R and a1, ..., an+1 be nonunit elements of R such 
that a1 ⋯ an+1 ∈ I . Since Mn

= 0 , we get that a1 ⋯ an = 0 ∈ I . Therefore, I is an 
(n + 1, n)-absorbing prime ideal of R. 	�  ◻

Theorem 2.23  Let f ∶ R → S be a ring homomorphism. Suppose that f(a) is nonunit 
in S for every nonunit element a in R. Then the following statements hold. 

(1)	 If J is an (m, n)-absorbing prime ideal of S,  then f −1(J) is an (m, n)-absorbing 
prime ideal of R.

(2)	 If f is an epimorphism and I is a proper ideal of R containing ker(f ), then I is an 
(m, n)-absorbing prime ideal of R if and only if f(I) is an (m, n)-absorbing prime 
ideal of S.

Proof  (1) Assume that a1 ⋯ am ∈ f −1(J), for some nonunit elements a1, ..., am ∈ R. 
Then f (a1)⋯ f (am) ∈ J . Thus f (a1)⋯ f (an) ∈ J or f (an+1)⋯ f (am) ∈ J, which 
implies that a1 ⋯ an ∈ f −1(J) or an+1 ⋯ am ∈ f −1(J). Therefore, f −1(J) is an (m, n)-
absorbing prime ideal of R.

(2) Suppose that f(I) is an (m, n)-absorbing prime ideal of S. Since I = f −1(f (I)) , 
we conclude that I is an (m, n)-absorbing prime ideal of R by (1). Conversely, let 
x1 ⋯ xm be nonunit elements of S with x1 ⋯ xm ∈ f (I) . Then there exist a1, ..., am ∈ R 
such that x1 = f (a1), ..., xm = f (am) with f (a1 ⋯ am) = x1 ⋯ xm ∈ f (I). Since 
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ker(f ) ⊆ I , we have a1 ⋯ am ∈ I. Since I is an (m, n)-absorbing prime ideal of R and 
a1 ⋯ am ∈ I , we conclude that a1 ⋯ an ∈ I or an+1 ⋯ am ∈ I , and thus x1 ⋯ xn ∈ f (I) 
or xn+1 ⋯ xm ∈ f (I) . Hence f(I) is an (m, n)-absorbing prime ideal of S.

	�  ◻

In view of Theorem 2.23, we have the following result.

Corollary 2.24  Let R be a ring, and I ⊆ J be proper ideals of R. Assume that a + I is 
a nonunit element of R

I
 for every nonunit element a ∈ R . Then J is an (m, n)-absorb-

ing prime ideal of R if and only if J
I
 is an (m, n)-absorbing prime ideal of R

I
.

Theorem 2.25  Let S be a multiplicatively closed subset of a ring R. If I is an (m, n)-
absorbing prime ideal of R such that I ∩ S = ∅ , then IS is an (m − 1, n − 1)-absorb-
ing prime ideal of RS . In particular, if I is a 1-absorbing prime ideal of R, then IS is 
a 1-absorbing prime ideal of RS.

Proof  Let I be an (m,  n)-absorbing prime ideal of R such that I ∩ S = ∅ and 
a1

s1
⋯

am−1

sm−1
∈ IS for some nonunit elements a1, ..., am−1 ∈ R and s1, ..., sm−1 ∈ S such 

that a1
s1
⋯

an−1

sn−1
∉ IS . Then ta1 ⋯ am−1 ∈ I for some t ∈ S . Since I is (m, n)-absorbing 

prime and ta1 ⋯ an−1 ∉ I , we conclude that an ⋯ am−1 ∈ I . Thus an
sn
⋯

am−1

sm−1
∈ IS , 

which completes the proof. 	�  ◻

Let S be a multiplicatively closed subset of a ring R and I an ideal of R. The 
next example shows that if IS is an (m,  n)-absorbing prime ideal of RS , then I 
needs not be an (m, n)-absorbing prime ideal of R.

Example 2.26  Let p ≠ q be two prime numbers. Set I = p2ℤ . Since pqpq ∈ I and 
pq ∉ I , I is not a (4,  2)-absorbing prime ideal of ℤ . Now, let S = ℤ ⧵ pℤ and 
R = ℤS . Assume that a1, ..., a4 ∈ pR and a1 ⋯ a4 ∈ IS = p2R . Then it is clear that 
a1a2 ∈ IS . Hence IS = p2R is a (4, 2)-absorbing prime ideal of R.

Let A be a ring and E be an A-module. Then A⋉ E , is called the trivial (ring) 
extension of A by E. We recall that A⋉ E is the ring whose additive structure 
is that of the external direct sum A⊕ E and whose multiplication is defined by 
(a, e)(b, f ) = (ab, af + be) for all a, b ∈ A and all e, f ∈ E . (This construction is 
also known as the idealization A(+)E .) The basic properties of trivial ring exten-
sions are summarized in the books [9, 10]. Trivial ring extensions have been stud-
ied and generalized by many authors (for example, cf. [2, 7, 8, 11]). We recall 
that if I is an ideal of A and F is a submodule of E, then I ⋉ F is an ideal of A⋉ E 
if and only if IE ⊆ F . In then next result, we study (m, n)-absorbing prime ideals 
of trivial ring extensions.

Theorem 2.27  Let A be a ring, E be an A-module, I be an ideal of A and F be a sub-
module of E such that IE ⊆ F . Then the following statements hold. 
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(1)	 If I ⋉ F is an (m, n)-absorbing prime ideal of A⋉ E , then I is an (m, n)-absorb-
ing prime ideal of A.

(2)	 I ⋉ E is an (m, n)-absorbing prime ideal of A⋉ E if and only if I is an (m, n)-
absorbing prime ideal of A.

(3)	 I ⋉ F is an (n + 1, n)-absorbing prime ideal of A⋉ E if and only if one of the 
following conditions holds: 

(a)	 I is prime and F = E.
(b)	 A is a quasi-local ring with maximal ideal M such that Mn ⊆ I and Mn−1E ⊆ F 

for n ≥ 2.

Proof  (1) Assume that I ⋉ F is an (m,  n)-absorbing prime ideal of A⋉ E 
and let a1, ..., am be nonunit elements of A such that a1 ⋯ am ∈ I . Thus 
(a1, 0)⋯ (am, 0) = (a1 ⋯ am, 0) ∈ I ⋉ F which implies that (a1, 0)⋯ (an, 0) ∈ I ⋉ F 
or (an+1, 0)⋯ (am, 0) ∈ I ⋉ F . Therefore a1 ⋯ an ∈ I or an+1 ⋯ am ∈ I and so (1) 
holds.

(2) By (1), it suffices to prove the "if" assertion. Let (a1, e1), ...(am, em) be 
nonunit elements of A⋉ E such that (a1, e1)⋯ (am, em) ∈ I ⋉ E . Clearly, 
a1 ⋯ am ∈ I and so a1 ⋯ an ∈ I or an+1 ⋯ am ∈ I since I is an (m,  n)-absorb-
ing prime ideal of A. As (a1, e1)⋯ (an, en) = (a1 ⋯ an, c) for some c ∈ E , 
we conclude that (a1, e1)⋯ (an, en) ∈ I ⋉ E . A similar argument shows that 
(an+1, en+1)⋯ (am, em) ∈ I ⋉ E . Therefore, I ⋉ E is an (m, n)-absorbing prime ideal 
of A⋉ E.

(3) Set R = A⋉ E and assume that I ⋉ F is an (n + 1, n)-absorbing prime 
ideal of R. So, Theorem 2.10 (2) implies that I ⋉ F is a prime ideal of R or R is 
quasi-local with maximal ideal N such that Nn ⊆ I ⋉ F . By [2, Theorem 3.2 (2)], 
if I ⋉ F is prime, then I is a prime ideal of A and E = F . In the remaining case, 
[2, Theorem  3.2 (1)] implies that A is quasi-local with maximal ideal M such 
that N = M ⋉ E . Let a1, ..., an ∈ M . As (a1, 0)⋯ (an, 0) ∈ Nn and Nn ⊆ I ⋉ F , 
we get that a1 ⋯ an ∈ I and thus Mn ⊆ I . Now, let a1, ..., an−1 ∈ M and e ∈ E . 
Since (a1, 0)⋯ (an−1, 0)(0, e) = (0, a1 ⋯ an−1e) ∈ Nn ⊆ I ⋉ F , we conclude that 
a1 ⋯ an−1e ∈ F and thus Mn−1E ⊆ F . The converse follows by a similar reasoning. 	
� ◻

The next corollary is an immediate application of part (3) of Theorem 2.27.

Corollary 2.28  Let A be a ring, E be an A-module, I be an ideal of A and F be a sub-
module of E such that IE ⊆ F . Then I ⋉ F is a 1-absorbing prime ideal of A⋉ E if 
and only if I a prime ideal of A and E = F or A is quasi-local with maximal ideal M 
such that M2 ⊆ I and ME ⊆ F.
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